Program [Vancouver Canada Time | US Pacific Time]
Session Start Time Talk Title Speaker(s)
Opening Remarks 8:30AM Welcome to CVMI 2023 & Logistics for Hybrid Format Mei Chen (Microsoft)
Invited Talk 8:40AM Machine learning challenges in spatial single cell omics analysis Fabian Theis (Technische Universität München)
Invited Talk 9:20AM AI for breast cancer diagnostics 2.0 Jeroen van der Laak (Radboud University Medical Center)
Accepted Paper 10:00AM Giga-SSL: Self-Supervised Learning for Gigapixel Images Tristan Lazard (Mines-Paristech)*; Marvin Lerousseau (Mines-Paristech); Etienne Decenciere (Mines-Paristech); Thomas Walter (Institut Curie / Mines ParisTech)
Accepted Paper 10:10AM Fast local thickness Vedrana A Dahl (Technical University of Denmark)*; Anders Bjorholm Dahl (Technical University of Denmark)
Work-in-Progress 10:20AM Automatic analysis of cryo-electron tomography using computer vision and machine learning Min Xu (Mohamed bin Zayed University of Artificial Intelligence)
Work-in-Progress 10:25AM Performance Review of Retraining and Transfer Learning of DeLTA 2.0 for Image Segmentation for Pseudomonas fluorescens SBW25 Beate C Gericke (Max Planck Institute for Evolutionary Biology)*; Finn Degner (Technische Hochschule Lübeck); Tom Hüttmann (Technische Hochschule Lübeck); Sören Werth (Technische Hochschule Lübeck); Carsten Fortmann-Grote (Max Planck Institute for Evolutionary Biology
10:30AM Coffee Break
Accepted Paper 10:40AM A Super-Resolution Training Paradigm Based on Low-Resolution Data Only to Surpass the Technical Limits of STEM and STM Microscopy Björn Möller (TU Braunschweig)*; Jan Pirklbauer (Institut für Nachrichtentechnik, TU Braunschweig); Marvin Klingner (Technische Universität Braunschweig ); Peer Kasten (TU Braunschweig); Markus Etzkorn (TU Braunschweig); Tim J Seifert (Technische Universität Braunschweig); Uta Schlickum (Institute of Applied Physics and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, Braunschweig, Germany); Tim Fingscheidt ( Technische Universität Braunschweig)
Accepted Paper 10:50AM New Bayesian Focal Loss Targeting Aleatoric Uncertainty Estimate: Pollen Image Recognition Natalia E Khanzhina (ITMO University)*; Maxim Kashirin (ITMO University); Andrey Filchenkov (ITMO University)
Work-in-Progress 11:00AM Virtual Staining for Pixel-Wise and Quantitative Analysis of Single Cell Image Analysis Abdurrahim Yilmaz (Bundeswehr University Munich); Rahmetullah Varol (Universitat der Bundeswehr Munchen)*; Tülay Aydın (Universitat der Bundeswehr Munchen)
Work-in-Progress 11:05AM Self-supervised clustering and annotation of single-cell trajectories Kristina Ulicna (The Alan Turing Institute)*; Manasi Kelkar (University College London (UCL)); Christopher J Soelistyo (The Alan Turing Institute); Guillaume Charras (University College London (UCL)); Alan R Lowe (University College London)
Work-in-Progress 11:10AM Spatio-temporal graph attention networks predict single cell response to cancer treatment in live 3D tumour spheroids Matt De Vries (Institute of Cancer Research), Lucas Dent (Institute of Cancer Research), Hugh Sparks (Imperial College London), Christopher Dunsby (Imperial College London), Chris Bakal (Institute of Cancer Research)
Invited Talk 11:15AM How Can Humans Learn from AI Po-Hsuan Cameron Chen (Need)
Lunch Break 11:55AM Lunch Break
Invited Talk 13:00 Decoding hidden signal from neurodegenerative drug discovery high-content screens Michael J Keiser (UC San Francisco)
Invited Talk 13:40 Multimodal Computational Pathology Faisal Mahmood (Harvard Medical School)
Accepted Paper 14:20 Learning to Correct Sloppy Annotations in Electron Microscopy Volumes Minghao Chen (MIT); Mukesh Banglore Renuka (Harvard University); Lu Mi (MIT); Jeff Lichtman (Harvard University); Nir Shavit (Massachusetts Institute of Technology); Yaron Meirovitch (Harvard; MIT)*
Accepted Paper 14:30 Theia: Bleed-Through Estimation with Convolutional Neural Networks Najib Ishaq (NIH); Nathan Hotaling (NIH); Nicholas Schaub (National Center for the Advancement of Translational Science, National Institutes of Health)*
Accepted Paper 14:40 RxRx1: A Dataset for Evaluating Experimental Batch Correction Methods Maciej Sypetkowski (Recursion); Morteza Rezanejad (Recursion)*; Saber Saberian (Recursion); Oren Kraus (Recursion); John Urbanik (Recursion); James Taylor (Enveda Biosciences); Ben Mabey (Recursion); Mason Victors (Recursion); Jason Yosinski (ML Collective); Alborz Rezazadeh Sereshkeh (Recursion); Imran Haque (Recursion); Berton Earnshaw (Recursion)
Accepted Paper 14:50 An Ensemble Method with Edge Awareness for Abnormally Shaped Nuclei Segmentation Yue Han (Purdue University)*; Yang Lei (HP); Viktor Shkolnikov (HP); Daisy Xin (HP); Alicia Auduong (HP); Steven Barcelo (HP); Jan Allebach (Purdue University); Edward Delp (Purdue University)
15:00PM Coffee Break
Invited Talk 15:30 PLIP: Leveraging medical Twitter to build a visual–language foundation model for pathology AI James Zou (Stanford University)
Invited Talk 16:00 Point-and-click: using microscopy images to guide spatial next generation sequencing measurements Jocelyn Kishi (Stealth TechBio Startup)
Accepted Paper 16:40 Out of Distribution Generalization via Interventional Style Transfer in Single-Cell Microscopy Wolfgang M Pernice (Columbia University)*; Michael Doron (The Broad Institute); Alex Quach (Massachusetts Institute of Technology); Aditya Pratapa (Virginia Polytechnic Institute and State University); Sultan Kenjeyev (University College London, University of London); Nicholas De Veaux (New York University); Michio Hirano (Columbia University); Juan Caicedo (Broad Institute)
Accepted Paper 16:50 One-shot and Partially-Supervised Cell Image Segmentation Using Small Visual Prompt Sota Kato (Meijo university)*; Kazuhiro Hotta (Meijo University)
Invited Talk 17:00 Enhancing SAM's Biomedical Image Analysis through Prompt-based Learning Dong Xu (University of Missouri Columbia)
Challenge 17:30 The Cell Tracking and Mitosis Challenge Samreen Anjum (University of Colorado Boulder)
Closing Remarks 17:45 Announcements & Look Forward to CVMI 2024 Mei Chen (Microsoft)